Menu
Connexion
Maths-Quiz
Recherche Quiz 6ème Quiz 5ème Quiz 4ème Quiz 3ème Contact
Retour à la liste des quiz
sanscalculatrice
QUIZ
Développement : double distributivité (QCM)
Développer et réduire :
Question 1 :
$(\,t+\,2)\;(\,x+\,4) = $ ?
$\,2\,\,t\,x +\,5\,\,t +\,3\,\,x +\,6$ $\,7\,\,t^2\,x^2 +\,8$ $\,\,t\,x +\,4\,\,t +\,2\,\,x +\,8$ $\,\,t\,x +\,8$
Question 2 :
$(\,4\,t+\,6)\;(\,3\,t+\,4) = $ ?
$\,12\,\,t^2 +\,34\,\,t +\,24$ $\,46\,\,t +\,24$ $\,7\,\,t^2 +\,17\,\,t +\,10$ $\,12\,\,t^2 +\,24$
Question 3 :
$(\,3+\,2\,x)\;(\,2+\,3\,y) = $ ?
$\,6 +\,9\,\,y +\,4\,\,x +\,6\,\,x\,y$ $\,6\,\,x\,y +\,6$ $\,5 +\,6\,\,y +\,4\,\,x +\,5\,\,x\,y$ $\,19\,\,x^2\,y^2 +\,6$
Question 4 :
$(\,1+\,4\,t)\;(\,5+\,2\,t) = $ ?
$\,6\,\,t^2 +\,12\,\,t +\,6$ $\,30\,\,t +\,5$ $\,8\,\,t^2 +\,5$ $\,8\,\,t^2 +\,22\,\,t +\,5$
Question 5 :
$(\,6+\,4\,t)\;(\,5\,x\,-1) = $ ?
$\,-30\,\,x +\,6 +\,20\,\,t\,x \,-4\,\,t$ $\,30\,\,x \,-6 +\,20\,\,t\,x \,-4\,\,t$ $\,-30\,\,x \,-6 \,-20\,\,t\,x \,-4\,\,t$ $\,30\,\,x +\,6 +\,20\,\,t\,x +\,4\,\,t$
Question 6 :
$(\,5\,b\,-2)\;(\,6\,-\,a) = $ ?
$\,30\,\,b \,-5\,\,a\,b \,-12 \,-2\,\,a$ $\,30\,\,b \,-5\,\,a\,b \,-12 +\,2\,\,a$ $\,-30\,\,b \,-5\,\,a\,b +\,12 +\,2\,\,a$ $\,-30\,\,b \,-5\,\,a\,b \,-12 \,-2\,\,a$
Question 7 :
$(\,6\,x+\,3)\;(\,2\,-\,x) = $ ?
$\,6\,\,x^2 +\,9\,\,x \,-6$ $\,-6\,\,x^2 \,-15\,\,x +\,6$ $\,-6\,\,x^2 \,-15\,\,x \,-6$ $\,-6\,\,x^2 +\,9\,\,x +\,6$
Question 8 :
$(\,x\,-1)\;(\,-\,y\,-4) = $ ?
$\,-\,\,x\,y \,-4\,\,x +\,\,y +\,4$ $\,\,x\,y \,-4\,\,x +\,\,y +\,4$ $\,-\,\,x\,y +\,4\,\,x \,-\,\,y +\,4$ $\,\,x\,y \,-4\,\,x \,-\,\,y +\,4$
Question 9 :
$(\,5\,-6\,a)\;(\,-4\,a+\,3) = $ ?
$\,-24\,\,a^2 +\,2\,\,a +\,15$ $\,24\,\,a^2 \,-38\,\,a +\,15$ $\,24\,\,a^2 \,-2\,\,a +\,15$ $\,24\,\,a^2 +\,2\,\,a \,-15$
Question 10 :
$(\,y\,-3)\;(\,-\,y\,-4) = $ ?
$\,\,y^2 \,-\,\,y \,-12$ $\,-\,\,y^2 \,-\,\,y \,-12$ $\,-\,\,y^2 +\,7\,\,y \,-12$ $\,-\,\,y^2 \,-\,\,y +\,12$