Menu
Connexion
Maths-Quiz
Recherche Quiz 6ème Quiz 5ème Quiz 4ème Quiz 3ème Contact
Retour à la liste des quiz
sanscalculatrice
QUIZ
Méthode : Résoudre une équation
Exercice n°1
On veut résoudre cette équation : $-3x\;+2\; \; = \; -7x\;+10\;$
Question 1 :
On commence par regrouper tous les termes en « $x$ » dans le membre de gauche de l'équation. Pour cela, quelle opération effectue-t-on des deux côtés de l'équation ?
$-$ $3$ $+$ $7x$ $+$ $7$ $-$ $3x$ $+$ $3x$ $-$ $7$ $+$ $3$
Question 2 :
$-3x\;+2\;\color{red}{+7x} \; = \; -7x\;+10\; \color{red}{+7x}$ En réduisant les deux membres de l'équation on obtient : $x+2\; \; = \; 10$
Valider la réponse
Question 3 :
Ensuite on regroupe tous les termes sans « $x$ » dans le membre de droite de l'équation. Pour cela, quelle opération effectue-t-on des deux côtés de l'équation ?
$-$ $2x$ $+$ $4x$ $-$ $2$ $-$ $4x$ $-$ $10$ $+$ $2x$ $+$ $10$
Question 4 :
$4x\;+2\;\color{red}{-2} \; = \; 10 \color{red}{-2}$ En réduisant les deux membres de l'équation on obtient : $4x\; \; = \; $
Question 5 :
On veut enfin n'avoir que « $1x$ » dans le membre de gauche de l'équation. Pour cela, quelle opération effectue-t-on des deux côtés de l'équation ?
$\div$ $(-8)$ $\div$ $4$ $\div$ $4x$ $\div$ $(-4)$ $\div$ $8$
Question 6 :
$\color{red}{\dfrac{\color{navy}{4x}}{4}} \; = \; \color{red}{\dfrac{\color{navy}{8}}{4}} $ La valeur de $x$, c'est à dire la solution de l'équation est : $x \; = \; $
Exercice n°2
On veut résoudre cette équation : $-14x\;+1\; \; = \; -3x\;-1\;$
$+$ $14$ $+$ $3x$ $+$ $14x$ $-$ $14x$ $-$ $14$ $+$ $3$ $-$ $3$
$-14x\;+1\;\color{red}{+3x} \; = \; -3x\;-1\; \color{red}{+3x}$ En réduisant les deux membres de l'équation on obtient : $x+1\; \; = \; -1$
$+$ $11x$ $+$ $1x$ $+$ $1$ $-$ $1$ $-$ $11x$ $-$ $1$ $-$ $1x$
$-11x\;+1\;\color{red}{-1} \; = \; -1 \color{red}{-1}$ En réduisant les deux membres de l'équation on obtient : $-11x\; \; = \; $
$\div$ $11x$ $\div$ $2$ $\div$ $11$ $\div$ $(-2)$ $\div$ $(-11)$
$\color{red}{\dfrac{\color{navy}{-11x}}{-11}} \; = \; \color{red}{\dfrac{\color{navy}{-2}}{-11}} $ La valeur de $x$, c'est à dire la solution de l'équation est : $x \; = \; $