Retour à la liste des quiz

sans
calculatrice

QUIZ

Méthode : Résoudre une équation

Exercice n°1

On veut résoudre cette équation :     $-10\;-4x\; \; = \; 4\;-2x\;$

Question 1 :

On commence par regrouper tous les termes en « $x$ » dans le membre de gauche de l'équation.
Pour cela, quelle opération effectue-t-on des deux côtés de l'équation ?

$+$ $4$ $+$ $4x$ $-$ $4x$ $-$ $2$ $+$ $2x$ $+$ $2$ $-$ $4$

Question 2 :

$-10\;-4x\;\color{red}{+2x} \; = \; 4\;-2x\; \color{red}{+2x}$

En réduisant les deux membres de l'équation on obtient :

$x-10\; \; = \; 4$      

Valider la réponse

Question 3 :

Ensuite on regroupe tous les termes sans « $x$ » dans le membre de droite de l'équation.
Pour cela, quelle opération effectue-t-on des deux côtés de l'équation ?

$+$ $4$ $+$ $10$ $+$ $10x$ $-$ $2x$ $+$ $2x$ $-$ $10x$ $-$ $4$

Question 4 :

$-2x\;-10\;\color{red}{+10} \; = \; 4 \color{red}{+10}$

En réduisant les deux membres de l'équation on obtient :

$-2x\; \; = \; $      

Valider la réponse

Question 5 :

On veut enfin n'avoir que « $1x$ » dans le membre de gauche de l'équation.
Pour cela, quelle opération effectue-t-on des deux côtés de l'équation ?

$\div$ $2x$ $\div$ $(-2)$ $\div$ $2$ $\div$ $14$ $\div$ $(-14)$

Question 6 :

$\color{red}{\dfrac{\color{navy}{-2x}}{-2}} \; = \; \color{red}{\dfrac{\color{navy}{14}}{-2}} $

La valeur de $x$, c'est à dire la solution de l'équation est :

$x \; = \; $      

Valider la réponse

Exercice n°2

On veut résoudre cette équation :     $-2x\;-1\; \; = \; -6x\;+20\;$

Question 1 :

On commence par regrouper tous les termes en « $x$ » dans le membre de gauche de l'équation.
Pour cela, quelle opération effectue-t-on des deux côtés de l'équation ?

$+$ $2$ $+$ $6$ $+$ $2x$ $-$ $2$ $+$ $6x$ $-$ $6$ $-$ $2x$

Question 2 :

$-2x\;-1\;\color{red}{+6x} \; = \; -6x\;+20\; \color{red}{+6x}$

En réduisant les deux membres de l'équation on obtient :

$x-1\; \; = \; 20$      

Valider la réponse

Question 3 :

Ensuite on regroupe tous les termes sans « $x$ » dans le membre de droite de l'équation.
Pour cela, quelle opération effectue-t-on des deux côtés de l'équation ?

$+$ $1x$ $+$ $20$ $+$ $4x$ $+$ $1$ $-$ $1x$ $-$ $4x$ $-$ $20$

Question 4 :

$4x\;-1\;\color{red}{+1} \; = \; 20 \color{red}{+1}$

En réduisant les deux membres de l'équation on obtient :

$4x\; \; = \; $      

Valider la réponse

Question 5 :

On veut enfin n'avoir que « $1x$ » dans le membre de gauche de l'équation.
Pour cela, quelle opération effectue-t-on des deux côtés de l'équation ?

$\div$ $(-4)$ $\div$ $4$ $\div$ $(-21)$ $\div$ $4x$ $\div$ $21$

Question 6 :

$\color{red}{\dfrac{\color{navy}{4x}}{4}} \; = \; \color{red}{\dfrac{\color{navy}{21}}{4}} $

La valeur de $x$, c'est à dire la solution de l'équation est :

$x \; = \; $      

Valider la réponse

Retour à la liste des quiz